Selasa, 07 Desember 2010

patologi stroke

Stroke Pathophysiology
Sid Shah, MD
Pathophysiology of Stroke Page 2 of 14
Sid Shah, MD
Stroke Pathophysiology
Introduction
The two major mechanisms causing brain damage in stroke are, ischemia and hemorrhage. In ischemic stroke, which represents about 80% of all strokes, decreased or absent circulating blood deprives neurons of necessary substrates. The effects of ischemia are fairly rapid because the brain does not store glucose, the chief energy substrate and is incapable of anaerobic metabolism.1 Non-traumatic intracerebral hemorrhage represents approximately 10% to 15% of all strokes. Intracerebral hemorrhage originates from deep penetrating vessels and causes injury to brain tissue by disrupting connecting pathways and causing localized pressure injury. In either case, destructive biochemical substances released from a variety of sources play an important role in tissue destruction.
Focal Ischemic Injury
A thrombus or an embolus can occlude a cerebral artery and cause ischemia in the affected vascular territory. It is often not possible to distinguish between a lesion caused by a thrombus and one caused by an embolus. Thrombosis of a vessel can result in artery-to-artery embolism. Mechanisms of neuronal injuy at the cellular level are governed by hypoxia or anoxia from any cause that is reviewed below.
At a gross tissue level, the vascular compromise leading to acute stroke is a dynamic process that evolves over time. The progression and the extent of ischemic injury is influenced by many factors.2-5
Rate of onset and duration: the brain better tolerates an ischemic event of short duration or one with slow onset.
Collateral circulation: the impact of ischemic injury is greatly influenced by the state of collateral circulation in the affected area of the brain. A good collateral circulation is associated with a better outcome.
Health of systemic circulation: Constant cerebral perfusion pressure depends on adequate systemic blood pressure. Systemic hypotension from any reason can result in global cerebral ischemia.
Hematological factors: a hypercoagulable state increases the progression and extent of microscopic thrombi, exacerbating vascular occlusion.
Temperature: elevated body temperature is associated with greater cerebral ischemic injury.
Glucose metabolism: hyper- hypoglycemia can adversely influence the size of an infarct.
Pathophysiology of Stroke Page 3 of 14
Sid Shah, MD
Cerebral Blood Flow
Normal cerebral blood flow (CBF) is approximately 50-to 60 ml/100g/ Min and varies in different parts of the brain. In response to ischemia, the cerebral autoregulatory mechanisms compensate for a reduction in CBF by local vasodilatation, opening the collaterals, and increasing the extraction of oxygen and glucose from the blood. However, when the CBF is reduced to below 20 ml/100g/min, an electrical silence ensues and synaptic activity is greatly diminished in an attempt to preserve energy stores. CBF of less than 10ml/100g/min results in irreversible neuronal injury.1,6-11
Mechanisms of neuronal injury
Formation of microscopic thrombi responsible for impairment of microcirculation in the cerebral arterioles and capillaries is a complex phenomenon. Formation of a micro thrombus is triggered by ischemia-induced activation of destructive vasoactive enzymes that are released by endothelium, leucocytes, platelets and other neuronal cells. Mechanical “plugging” by leucocytes, erythrocytes, platlets and fibrin ensues.12
At a molecular level, the development of hypoxic- ischemic neuronal injury is greatly influenced by “overreaction” of certain neurotransmitters, primarily glutamate and aspartate. This process called “excitotoxicity” is triggered by depletion of cellular energy stores. Glutamate, which is normally stored inside the synaptic terminals, is cleared from the extracellular space by an energy dependent process. The greatly increased concentration of glutamate (and aspartate) in the extracellular space in a depleted energy state results in the opening of calcium channels associated with N-methy1-D-asapartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxanole propionate (AMPA) receptors. Persistent membrane depolarization causes influx of calcium, sodium, and chloride ions and efflux of potassium ions.13-24
Intracellular calcium is responsible for activation of a series of destructive enzymes such as proteases, lipases, and endonucleases that allow release of cytokines and other mediators, resulting in the loss of cellular integrity. 15-19
Inflammatory response to tissue injury is initiated by the rapid production of many different inflammatory mediators, tumor necrosis factor being one of the key agents. Leukocyte recruitment to the ischemic areas occurs as early as thirty minutes after ischemia and reperfusion. In addition to contributing to mechanical obstruction of microcirculation, the leucocytes also activate vasoactive substances such as oxygen free radicals, arachidonic acid metabolites (cytokines), and nitric acid. The cellular effects of these mediators include vasodilatation, vasoconstriction, increased permeability, increased platelets aggregation, increased leukocyte adherence to the endothelial wall, and immunoregulation.
Endothelial cells are one of the first cell types to respond to hypoxia. This response occurs at morphological, biochemical and immunological levels, causing a variety of physiological and pharmacological effects. Morphologically, endothelial cells swell and
Pathophysiology of Stroke Page 4 of 14
Sid Shah, MD
form “microvilli” at the luminal surface of the cell. This results in a reduction in the luminal patency of the capillary vessel. Mechanical plugging by erythrocytes, leukocytes, and platelets ensues. At a biochemical level, endothelial cells mediate the effects of vasoactive agents such as endothelin peptides, eicosanoids, and smooth muscle relaxant (probably nitric acid), which in part modulate the vascular tone of the microcirculation. Activation of endothelial adhesion molecules promotes leukocyte adherence to the endothelial wall, a key process in the initiation of the inflammatory process.13-24
Ischemic Penumbra (IP)
Within an hour of hypoxic- ischemic insult, there is a core of infarction surrounded by an oligemic zone called the ischemic penumbra (IP) where autoregulation is ineffective. The critical time period during which this volume of brain tissue is at risk is referred to as the “window of opportunity” since the neurological deficits created by ischemia can be partly or completely reversed by reperfusing the ischemic yet viable brain tissue within a critical time period (2 to 4 hours?).1,6-8,10,11,23-25
IP is characterized by some preservation of energy metabolism because the CBF in this area is 25% to 50% of normal. Cellular integrity and function are preserved in this area of limited ischemia for variable periods of time. The pathophysiology of IP is closely linked to generation of spontaneous waves of depolarization (SWD). SWD can originate from multiple foci; some from the ischemic core and others form ischemic foci within the peri-infarct zone (penumbra). Sustained increases of synaptic glutamate and extracellular potassium ions are closely associated with the development of SWD. Glutamate receptor antagonists that block transmembrane calcium flux and prevent intracellular calcium accumulation are known to suppress SWD. Hypoxic or rapid depolarizations eventually supervene just before irreversible neuronal death.26-34
Neuronal death
The two processes by which injured neurons are known to die are coagulation necrosis and apoptosis.
Coagulation necrosis (CN) refers to a process in which individual cells die among living neighbor cells without eliciting an inflammatory response. This type of cell death is attributed to the effects of physical, chemical, or osmotic damage to the plasma membrane. This is in contrast to liquefaction necrosis, which occurs when cells die, leaving behind a space filled by “inflammatory response” or pus.
In CN, the cell initially swells then shrinks and undergoes pyknosis – a term used to describe marked nuclear chromatin condensation. This process evolves over 6 to 12 hours. By 24 hours extensive chromatolysis occurs resulting in pan-necrosis. Astrocytes swell and fragment, myelin sheaths degenerate. Irreversible cellular injury as demonstrated by eosinophilic cytoplasm and shrunken nuclei are seen between 8 to 12
Pathophysiology of Stroke Page 5 of 14
Sid Shah, MD
hours after arterial occlusion (91). The morphology of dying cells in coagulation necrosis is different than that of cell death due to apoptosis.10,11,15,17,35
The term apoptosis is derived from the study of plant life wherein deciduous trees shed their leaves in the fall. This is also called “programmed cell death”, because the leaves are programmed to die in response to seasonal conditions. Similarly, cerebral neurons are “programmed” to die under certain conditions, such as ischemia. During apoptosis, nuclear damage occurs first. The integrity of the plasma and the mitochondrial membrane is maintained until late in the process. Ischemia activates latent “suicide” proteins in the nuclei, which starts an autolytic process resulting in cell death. This autolytic process is mediated by DNA cleavage. 36,37
Apoptotic mechanisms begin within 1 hour after ischemic injury whereas CN begins by 6 hours after arterial occlusion. This observation has an important bearing on future directions of research. The manner by which apoptosis evolves is a focus of much research, because, hypothetically, neuronal death can be prevented by modifying the process of DNA cleavage that seems to be responsible for apoptosis.
Ischemic Stroke
The three main mechanisms causing ischemic strokes are: (a) thrombosis, (2) embolism and (3) global ischemia (hypotensive) stroke. All ischemic strokes do not neatly fall into these categories and the list of entities responsible for unusual stroke syndromes is very long. However, strokes caused by vasospasm (migraine, following SAH, hypertensive encephalopathy) and some form of “arteritis” stand out among the more infrequent causes of stroke.
Thrombosis
Atherosclerosis is the most common pathological feature of vascular obstruction resulting in thrombotic stroke.38 Atherosclerotic plaques can undergo pathological changes such as ulcerations, thrombosis, calcifications, and intra-plaque hemorrhage. The susceptibility of the plaque to disrupt, fracture or disrupt or ulcerate depends on the structure of the plaque, and its composition and consistency. Disruption of endothelium that can occur in the setting of any of these pathological changes initiates a complicated process that activates many destructive vasoactive enzymes. Platelet adherence and aggregation to the vascular wall follow, forming small nidi of platelets and fibrin. Leucocytes that are present at the site within 1 hour of the ictus mediate an inflammatory response.38-43
In addition to atherosclerosis, other pathological conditions that cause thrombotic occlusion of a vessel include clot formation due to hypercoagulable state, fibromuscular dysplasia, arteritis (Giant cell and Takayasu), and dissection of a vessel wall.
In contrast to the occlusion of large atherosclerotic vessels, lacunar infarcts occur as a result of occlusion of deep penetrating arteries that are 100 to 400 mm in diameter and originate for the cerebral arteries. The putamen and pallidum, followed by pons,
Pathophysiology of Stroke Page 6 of 14
Sid Shah, MD
thalamus, caudate nucleus, and internal capsule are the most frequently affected sites. The size of a lacunar infarct is only about 20 mm in diameter. The incidence of lacunar infarcts is 10% to 30% of all strokes depending on race and preexisting hypertension and diabetes mellitus. The small arteriole, most frequently as a result of chronic hypertension lengthens, becomes tortuous and develops subintimal dissections and micro-aneurysms rendering the arteriole susceptible to occlusion from micro-thrombi. Fibrin deposition resulting in lipohyalinosis is considered to be the underlying pathological mechanism.44,45
Embolism
Embolic stroke (ES) can result from embolization of an artery in the central circulation from a variety of sources. Besides clot, fibrin, and pieces of atheromatous plaque, materials known to embolize into the central circulation include fat, air, tumor or metastasis, bacterial clumps, and foreign bodies. Superficial branches of cerebral and cerebellar arteries are the most frequent targets of emboli. Most emboli lodge in the middle cerebral artery distribution because 80% of the blood carried by the large neck arteries flow through the middle cerebral arteries.43
The two most common sources of emboli are: the left sided cardiac chambers and large arteries, (e.g. “artery to artery” emboli that result from detachment of a thrombus from the internal carotid artery at the site of an ulcerated plaque).
The neurological outcome from an ES depends not only on the occluded vascular territory but also on the ability of the embolus to cause vasospasm by acting as a vascular irritant. The vasospasm can occur in the vascular segment where the embolus lodges or can involve the entire arterial tree. Vasospasm tends to occur in younger patients, probably because the vessels are more pliable and less atherosclerotic.
Many embolic strokes become “hemorrhagic” causing hemorrhagic infarction (HI). Hemorrhagic infarct (used here synonymously with hemorrhagic transformation of an ischemic infarct) is an ischemic infarct in which bleeding develops within the necrotizing cerebral tissue. The pathogenesis of hemorrhagic transformation of a pale infarct is a complex phenomenon.
The two common explanations that are advanced to explain the pathogenesis of HI in embolic strokes are: (1) Hemorrhagic transformation occurs because ischemic tissue is often reperfused when the embolus lyses spontaneously and blood flow is restored to a previously ischemic area. An initial vascular obstruction is likely to occur at a bifurcation of a major vessel. The occlusion may obstruct one or both of the branches, producing ischemia of the distal tissue. Blood vessels as well as brain tissue are rendered fragile and injured. When the occluding embolus either lyses spontaneously or breaks apart and migrates distally, CBF is restored to the “injured or ischemic” microcirculation. This can result in a hemorrhagic or “red infarct” in what had previously been a bloodless field. The areas that continue to be poorly perfused are referred to as “pale” or “anemic infarcts.” (2) Hemorrhagic transformation is also known to occur with persistent occlusion of the parent artery proximally, indicating that hemorrhagic transformation is not always
Pathophysiology of Stroke Page 7 of 14
Sid Shah, MD
associated with migration of embolic material. HI on the periphery of infarcts in presence of persistent arterial occlusion is caused by reperfusion from leptomeningeal vessels that provide collateral circulation. In patients with ES, it is not unusual to see HI side-by-side with ischemic infarction.
The three main factors associated with “red infarcts” or hemorrhagic infarctions include the size of the infarct, richness of collateral circulation, and the use of anticoagulants and interventional therapy with thrombolytic agents. Large cerebral infarctions are associated with a higher incidence of hemorrhagic transformation. Hypertension is not considered to be an independent risk factor for hemorrhagic transformation of an ischemic infarct.46-49
Global – Ischemic or Hypotensive stroke
Profound reduction in systemic blood pressure due to any reason is responsible for “hypotensive stroke.” Some neurons are more susceptible to ischemia than others. These include the pyramidal cell layer of the hippocampus and the Purkinje cell layer of the cerebellar cortex. Cerebral gray matter is also particularly vulnerable. Abundance of glutamate in these neurons renders them more susceptible to global ischemia.
Global ischemia causes the greatest damage to areas between the territories of the major cerebral and cerebellar arteries known as the “boundary zone” or “watershed area.” The parietal-temporal-occipital triangle at the junction of the anterior, middle, and posterior cerebral arteries is most commonly affected. Watershed infarction in this area causes a clinical syndrome consisting of paralysis and sensory loss predominantly involving the arm; the face is not affected and speech is spared. Watershed infarcts make up approximately 10% of all ischemic strokes and almost 40% of these occur in patients with carotid stenosis or occlusion.50
Pathophysiology of Stroke Page 8 of 14
Sid Shah, MD
Pathophysiology of Stroke
Reference List
1. Jones TH, Morawetz RB, Crowell RM, et al. Thresholds of focal ischemia in awake monkeys. J Neurosurg. 1981; 54:773-782.
2. Wass CT, Lanier WL,. Glucose modulation of ischemic brain injury: review and clinical recommendations. Mayo Clin Proc. 1996;71:801-812.
3. Bruno A, Biller J, Adams HP Jr, et al. Acute blood glucose level and outcome from ischemic stroke. Neurology. 1999;52:280-284.
4. Reith J, Jorgensen HS, Pedersen PM, et al. Body temperature in acute stroke: relation to stroke severity, infarct size, mortality, and outcome. Lancet. 1996;347:422-425.
5. Schwab S, Spranger M, Aschoff A, et al. Brain temperature monitoring and modulation in patients with severe MCA infarction. Neurology. 1997;48:762-767.
6. Pulsinelli WA. The ischemic penumbra in stroke. Sci Med. 1995;1:16-25.
7. Hakim AM. Ischemic penumbra, the therapeutic window. Neurology. 1998;51(Suppl 3):S44-S46.
8. Astrup J, Seisjo BK, Symon L. Thresholds in cerebral ischemia – the ischemic penumbra. Stroke. 1981;12:723-725.
9. Zivin JA, Choi DW. Stroke therapy. Sci Med. 1991;265:56-53.
10. Wise RJ, Bernardi S, Frackowiak RS, Legg NJ, Jones T. Serial observations on the pathophysiology of acute stroke: the transition form ischaemia to infarction as reflected in regional oxygen extraction. Brain. 1983;106 (Pt 1):197-222.
11. Heros R. Stroke: early pathophysiology and treatment. Stroke. 1994;25:1877-1881.
12. Garcia JH, Liu K, Yoshida Y et al. Brain mictrovessels:factors altering their patency after the occlusion of a middle cerebral artery (Wistar rat). Am J Pathol 1994; 145:728-40.
13. Siesjo BK Free radicals and brain damage. Cerebrovasc Brain Metab Rev. 1989; 1:165-211
Pathophysiology of Stroke Page 9 of 14
Sid Shah, MD
14. Del Zoppo GJ, Schmidt-Schonbein GW, Mori E. et al. Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion. Stroke. 1991; 22:1276-1283
15. Siesjő BK: Cell damage in the brain: a speculative synthesis. J Cereb Blood Flow Metab.1981; 1:115-185
16. Rothman SM, Olney JW Excitotoxicity and the NMDA receptors. Trends Neurosci. 1987; 10:299-302
17. Becker KJ. Inflammation and acute stroke. Curr Opin Neurol. 1998;11:45-49.
18. Hademenos GJ, Massoud TF. Biophysical mechanisms of stroke. Stroke. 1997;28: 2067-77
19. DeGraba TJ. The role of inflammation after acute stroke, utility of pursuing anti-adhesion molecule therapy. Neurology. 1998;(Suppl 3):S62-S68.
20. Kroemer G, Pepit P, Zamzami N et al. The biochemistry of programmed cell death. FASEB J. 1995; 1277-1287
21. Adams DH, Shaw S. Leukocyte-endothelial interactions and regulation of leukocyte migration. Lancet 1994; 343: 831-836
22. Schor K, Braun M. Platelets as a source of vasoactive mediators. Stroke. 199; 21:IV32-IV35
23. Garcia JH, Liu K, Yoshida Y et al. Influx of leukocytes and platelets in an evolving brain infarct (Wistar rat). Am J Pathol 1994; 144: 188-199.
24. Garcia JH, Yoshida Y, Chen H et al. Progression from ischemic injury to infarct following middle cerebral artery occlusion in the rat. Am J Pathol 1993; 142:623-635
25. Hossmann YA. Viability thresholds and the penumbra of focal ischemia. Ann Neuro. 1994;36:557-565.
26. Nedergaard M. Mechanisms of brain damage in focal cerebral ischemia. Acta Neurol Scand 1988; 77 (supp):1-24.
27. Takagi K, Ginsberg MD, Globus MY-T, et al. Changes in amino acid neurotransmitters and cerebral blood flow in the ischemic penumbral region following middle cerebral artery occlusion in the rat: correlation with histopathology. J Cereb Blood Flow Metab 1993; 13: 575-585.
Pathophysiology of Stroke Page 10 of 14
Sid Shah, MD
28. Leao AAP. Spreading depression of activity in the cerebral cortex. Neurophysiolo 1944; 7: 359-390
29. Back T, ginsberg MD, Dietrich WD, Watson BD. Induction of spreading depression in the ischemic hemisphere following experimental middle cerebral artery occlusion: effect on infarct morphology. J Cereb Blood Flow Metab 1996; 16: 202-213
30. Dereski MO, Chopp M, Knight RA et al. The heterogenous temporal evolution of focal ischemic neuronal damage in the rat. Acta Neuropathol 1993; 85: 32- 333
31. Busch E, Gyngell ML, Ris M, et al. Potassium induced cortical spreading depression during focal cerebral ischemia in rates: contribution to llesoon growth assessed by diffusio-weighted NMP and biochemical imaging. J Cetreb Blood Flow Metab 1997; 17(supple)
32. Nedergaard M. Hansen AJ. Characterization of cortical depolarizations evoked in focal cerebral ischemia. J Cereb Blood Flow Metab 1993; 13:568-74.
33. Graf R, Saito R Hubel K et al. Spreading depression-like negativations turn into terminal depolarizations after prolonged focal ischemia in rates. J Cereb Blood Flow Metab 1995; 15(supp 1):S15
34. Hansen AJ. Effects of anoxia on ion distribution in the brain. Physiol Rev 1985; 65: 101-148
35. Garcia JH. Morphology of global cerebral ischemia: a review. Crit Care Med. 1988; 16:979.
36. Choi DW. Ischemia-induced neural apoptosis. Curr Opin Neurobiol. 1996;6:667-672.
37. Kajstra J, Cheng W, Reiss K et al. Apoptotic and necrotic myocyte cell deaths are independent of variables to infarct size in rats. Lab Invest. 1996; 74:86-1
38. Challa V. Atherosclerosis of the Cervicocranial arteries. In Toole JF (ed) Cerebrovascular disorders. 5th edition. Lippincott Williams and Wilkins, Philadelphia, 1999.
39. Fuster V. Stein B, Amboose JA et al. Atherosclerotic plaque rupture and thrombosis: evolving concepts. Circulation 1990; 82(supp II); 47-59.
40. Glaglov S, Zarins CB. What are the determinants of plaque instability and its consequences? J Vasc Surg 198; 9: 389-390.
Pathophysiology of Stroke Page 11 of 14
Sid Shah, MD
41. Falk E. Why do plaques rupture? Circulation 1992; 86:30-42.
42. Zamir M, Silver MD. Hemorrhagic and mocrovascular phenomenon within the arterial wall. Can J Cardiol 1992;8:981-84.
43. Garcia JH, Ho Khang-Loon, Pantoni L. Pathology in Barnett, Henry JM, Mohr JP, Stein BM, Yatsu FM (eds), Stroke Pathophysiology, Diagnosis and Management. Third edition, Philadelphia, PA: Churchill Livingston; 1998.
44. Pullicino PM Pathogenesis of lacunar infarcts and small deep infarcts. 1993. Adv Neurol 62: 125-140.
45. Yu R, McNeil JJ, O Malley HM, Davis SM Donnan GA Risk factors for lacunar infarction syndromes. Neurology 1995;45: 1483-87.
46. Lyden PD, Zivin JA. Hemorrhagic transformation after cerebral ischemia:Mechanisms and incidence. Cerebrovasc Brain Metab Rev.1993; 5:1-16.
47. Toni D, Fiorelli M, Bastianello S, Et al. Hemorrhagic transformation of brain infarct: predictability in the first five hours from stroke onset and influence on clinical outcome. Neurology. 1996;46:341-345.
48. Fagan SC, Garcia JH. Reperfusion hemorrhage after middle cerebral artery occlusion in the rat. Neurology 1996;46:A195.
49. Hart RG, Easton JH. Hemorrhagic infarcts. Stroke 1986;17: 586-89
50. Garcia JH, Anderson ML: Circulatory disorders and their effects on the brain.pp 715-822. In Davis RL, Robertson DM (eds): Textbook of Neuropathology, 3rd edition. Williams & Wilkins, Baltimore 1997
Pathophysiology of Stroke Page 12 of 14
Sid Shah, MD
Pathophysiology of Stroke
Annotated Bibliography
1. Barnett, Henry JM, Mohr JP, Stein BM, Yatsu FM (eds), Stroke Pathophysiology, Diagnosis and Management. Third edition, Philadelphia, PA: Churchill Livingston; 1998
This is one of the most exhaustive sources of all aspects of stroke. A voluminous book of over 1400 pages is divided into 5 sections. The section of pathophysiology has an excellent review of neurochemistry and molecular biology. Two very useful chapters dedicated to functional MRI and PET scans reference recent works which validate hypotheses regarding cerebral blood flow and oxygen/glucose metabolisms.
2. Toole JF. Brain Infarction: Pathophysiology, Clinical Feature and Management Cerebrovascular disorders. In: Toole JF (Editor) 5th edition. Philadelphia, PA: Lippincott Williams & Wilkins; 1999
This chapter is particularly well written. The author explains the basic concepts of pathophysiology without excessive detail. Separate chapters review cerebral embolism, intracerebral and subarachnoid hemorrhage. This is an excellent choice for a concise review of the various types of strokes.
3. Hakim AM: Ischemic penumbra, the therapeutic window. Neurology. 1998;51(supp 3):S44-46
Hakim presents a concise but very informative review of ischemic penumbra. He stresses that despite the knowledge of penumbra, we have yet to translate this knowledge into clinical practice. The neuronal death in the penubral tissue is now believed to be due to apoptosis. Research towards interrupting the apoptosis may allow greater viability of the penubral brain tissue.
4. Choi DW. Ischemia-induced neural apoptosis. Curr Opin Neurobiol. 1996;6:667-72
Choi distinguishes the traditional concept of hypoxic neuronal death due to necrosis from that of apoptosis. The process of apoptosis is also considered to be distinct from ischemia induced excitotoxicity. Apoptosis is now known to occur in both global and focal ischemic insults. This is a good review of apoptosis.
Pathophysiology of Stroke Page 13 of 15
Sid Shah, MD
Pathophysiology of Stroke
Questions
1. Conditions that adversely influence progression and extent of ischemic injury include all of the following except:
a. Systemic hypotension
b. Rapid development of an ischemic event
c. Hypercoaguable states
d. Prolonged ischemia
e. Subnormal normal body temperature
f. Hypo or hyperglycemia
g. State of collateral circulation
2. Features of ischemic stroke due to global reduction in cerebral blood flow (Hypotensive stroke) include all the following except:
a. Hippocampus and Purkinje cell layer of the cerebral cortex are most vulnerable to a reduction in cerebral blood flow
b. Speech difficulties typify victims of Hypotensive stroke who recover
c. Uncontrolled release of excitatory amino acids primarily glutamate and aspartate cause calcium channels to open up which ultimately leads to cell death
d. Sites affected by critically low cerebral blood flow are located at the end of an arterial territory, the so called watershed areas
3. The true statement with regards to ischemic penumbra (IP) is
a. IP is an area of massive neuronal death that results from a global reduction in cerebral blood flow (CBF)
b. CBF in the IP is usually above the 50% of the norm
c. Auto regulatory mechanisms are preserved in the IP
d. IP is a potentially salvageable area of marginal blood flow that surrounds a core of ischemic brain tissue
4. All of the following are true except
a. Reperfusion hemorrhage results when ‘fragile’ ischemic or injured vessels rupture after sudden restoration of blood flow
b. Hemorrhagic transformation of an ischemic infarct generally occurs in what had previously been a blood-less field
c. Hypertensives are more likely to suffer from reperfusion hemorrhage
d. Thrombolytic therapy increases the likelihood of reperfusion hemorrhage
Pathophysiology of Stroke Page 14 of 15
Sid Shah, MD
Pathophysiology of Stroke
Answers
1. Answer e.
Several studies have shown that hypothermia is actually beneficial in attenuating effects of brain ischemia.
2. Answer b.
A common site of a watershed infarction is the border zone between the anterior and middle cerebral arteries that extends over the frontomotor homunculi at approximately the level of the cortical representation of the arm. The resulting clinical syndrome consists of paralysis and sensory loss, predominantly involving the arm. Face is not affected and speech is spared.
The watershed infarct involving the anterior, middle and posterior cerebral arteries occurs in parietal occipital region causing homonymous hemianopia with visual agnosia, disorientation in space, apraxia, dysgraphia and dyslexia.
Speech difficulties are more commonly seen with a stroke involving the vascular territory of middle cerebral artery.
3. Answer d.
Cerebral blood flow in the ischemic penumbra (IP) is approximately 25% to 50% of normal. Cellular integrity and function are preserved in this area of limited ischemia for variable periods of time. This makes IP a potentially salvageable area.
4. Answer c.
The hemorrhagic transformation of an ischemic infarct - the so-called reperfusion hemorrhage is a complex phenomenon. The three main factors associated with this include the size of the infarct, richness of collateral circulation, and the use of anticoagulants and thrombolytic agents. Interestingly hypertension is not considered to a risk factor for reperfusion hemorrhage unlike hemorrhagic stroke that is more common in patients with hypertension.

Minggu, 05 Desember 2010

biokimia sel

“ SEL “
A. Pengertian.
Sel yaitu bagian terkecil dari tubuh manusia, yang ukurannyasangat kecil
sekali sehingga hanya dapat dilihat dengan mikroskop. Tiap – tiap jasad yang
bernyawa, tumbuh – tumbuhan maupun hewan terdiri dari sebuah sel ataupun
susunan sel – sel yang teratur bentuk dan susunannya. Sel sebagai unit dasar
kehidupan dari setiap makhluk hidup karena sel merupakan kesatuan struktual
makhluk hidup, kesatuan fungsioanal, kesatuan pertumbuhan, dan kesatuan
hereditas makhluk hidup
.
B. Bentuk dan Ukuran Sel
Bentuk sel bermacam – macam sesuai bentuk dan fungsinya atau tugasnya
serta letaknya pada organisme:
· Ada yang berbentuk bola, misalnya sel telur.
· Ada yang berbentuk seperti bintang, misalnya sel – sel jaringan ikat.
· Ada yang berbentuk seperti labah – labah, misalnya sel syaraf.
· Ada yang berbentuk seperti tabung, misalnya sel efitel usus.
Beberapa sel ada yang dapat berubah bentuknya, misalnya sel darah putih.
Sel yang berubah –ubah bentuknya disebut sel amoeboid
Ukuran sel berbeda – beda. Tetapi, pada umumnya ukuran sel sangat kecil
sehingga menggunakan mikroskop untuk melihatnya. Rata – rata ukuran sel
berkisar antara 5 – 15 mikron. Sel darah merah berukuran rata- rata 7,5 mikron,
sel terbesar yaitu yolk ( kuning telur ) bangsa burung dan ikan hiu, yang memiliki
garis tengah 10 milimeter. Sel syaraf termasuk berukuran yang besar. Sel terkecil (
menurut Storer ) adlah sel bakteri.
C. Membran Plasma.
Untuk melaksanakan aktivitas kehidupan seperti absorsi, traspor zat,
biosintesis, sekresi, eksresi, dan respirasi, didalam sel terdapat organela sel yaitu
http://khaidirmuhaj.tk
membran plasma. Membran plasma membatasi isi sel dengan sekitarnya secara
selektif.
Masuknya subtansi zat kedalam sel hidup dan mengeluaran subtansi zat
dari dalam tergantung tergantung dari sifat permeabel membran plasma. Mambran
dikatakan permeabel apabila ia dapat dilalui oleh molekul zat pelarut maupun
molekul zat terlarut. Dikatakan semi permeabel, apabila membran tersebut dapat
dilalui oleh beberapa molekul zat tertentu saja, tetapi tidak dapat dilalui molekul
zat lainnya. Begitu pula membran dikatakan impermeable apabila tidak dapat
dilalui oleh molekuk zat. Membran semipermiable disebut juga selektif permeable
atau diferensial permiable.
Fungsi membran plasma antara lain mengatur pertukaran subtansi zat
antara sel dengan sel tetangganya dan antara sel dangan lingkungannya.
Pertukaran zat tersebut terjadi secara difusi, osmosi atau pengaangkutan secara
aktif.
D. Struktur Sel.
Bagian – bagian sel meliputi:
1) Dinding Sel ( Selaput Sel ).
Yaitu selaput sel yang tipis melindungi sel atau bagian sel yang
ada didalamnya. Disamping itu dinding sel berfungsi untuk memberikan
kesempatan memasukan zat yang diperlukan dan mengeluarkan zat – zat
yang tidak diperlukan.
2) Protoplasma.
Merupakan badan sel yang terdiri dari suatu zat yang kental, yang
didalamnya mengandung suatu larutan koloid dari protein, hidrat arang,
lemak, garan –garam, vitamin dan air yang berguna untuk pertumbuhan
sel. Protoplasma dengan inti disebut sitoplasma.
3) Inti sel ( Nukleus ).
Pada umumnya terletak ditengah sel, merupakan pusat kegiatan
kimiawi untuk hidupnya sel dalam mengatur pertumbuhan,
perkembangan, dan pembelahan sel. Di dalam inti sel terdapat suatu bahan
yang disebut linin ( benang – benang berbentuk jala ). Dan diantara
pembelahan sel akan berubah memjadi kromosom ( pembawa sifat
keturunan ). Disamping bagian tersebut di atas masih ada bagian lain dari
http://khaidirmuhaj.tk
sel yang terdapat di bagian sitplasma, yaitu: Sentrosom. Letaknya
disebelah atas dari inti sel, fungsinya pada waktu terjadinya pembelahan
sel ( merupaka pusat pembagian sel ).
E. Uniseluler.
Merupakan suatu makhluk hidup yang terdiri dari hanya satu sel, misalnya
amuba, ia dapat bergerak dengan merubah bentuk protoplasmanyadengan
membentuk kaki palsu, pergerakan ini disebabkan oleh karena di dalam sel itu
sendiri terjadi oksidasi ( pembakaran ). Kalau kita lihat makhluk hidup
( khususnya manusia ) yang tumbuh yang tubuhnya terdiri dari bermacam –
macam susunan sel – sel, maka masing – masing sel tersebut memerlukan
makanan, oksigen untuk keperluan hidupnya yang di dapat dari lingkungan
sekitarnya yaitu cairan jaringan. Cairan jaringan ini melalui permukaan dari sel
dapat mengambil bahan – bahan yang diperlukannya dan mengeluarkan sisa
pembakaran ( ampas ). Adapun zat yang terkandung dalam cairan jaringan,
kandungannya sama dengan zat –zat yang terdapat dalam cairan darah. Masuknya
zat –zat yang diperlukan ( zat makanan, oksigen, dan lain – lain ) kedalam sel
yaitu dengan cara difusi dan osmosa.
Peristiwa masuknya zat – zat terssebut kedalam sel dimana zat – zat
tersebut dirubah menjadi bagian – bagian dari sel disebut anabolisme ( peristiwa
pembentukan sel ). Sedangkan peristiwa pemecahan zat – zat itu di dalam sel
terjadinya pembakaran dengan prantara oksigen untuk mendapatkan tenaa dan
panas disebut katabolisme ( peristiwa pemecahan \ pembakaran sel ). Kedua
peristiwa ini ( anabolisma dan katabolisme ) yang terjadi di dalam sel disebut
pertukaran zat metabolisme.
Dengan adanya maka akan kelihatan tanda – tanda hidup dari pada sel
yang meliputi : Bernapas, menerima zat asam dan mengeluarkan zat asam arang,
menerima zat makanan, tumbuh dan berkembang ( bertanbah besar ), bergerak dan
memperbanyak diri.
http://khaidirmuhaj.tk
Pergerakan Uniselular.
1) Kaki Palsu ( Pseudopodia ).
Mula – mula sebuah sel membuat tonjolan dari tubuhnya makin lama
makin besar, setelah cukup besar di pindahkan nukleusnya kedalam
pseudopodia ini
sehingga sel itu dapat berpindah tempat.
2) Bulu Cambuk ( Flagela ).
Adalah semacam ekor yang dimiliki oleh sel, dengan gerakan ini
maka sel dapat bergerak seperti kecubung atau berudu.
3) Bulu Getar ( Silia ).
Semacam bulu – bulu yang jumlahnya sangat banyak yang tumbuh
dipermukaan sel membran. Silia ini dapat digerakkan sehingga sel dapat
berenang.
F. Reproduksi Sel.
Setiap makhluk hidup tumbuh dan berkembang . pertumbuhan diawalin
dari pembelahan sel adalah reprudksi sel secara asksual atau repruduksi vegetatif.
Sebuah sel membelah diri menjadi dua sel anak, kemudian membelah lagi menjadi
4, 8, 16, 32, dan seterusnya. Dengan cara ini, anggota organisasi unisel bertambah
jumlahnya, sehingga populasinya semakin besar. Pada organisme multisel, seperti
tumbuhan dan hewan tingkat tinggi, pembelahan sel atau reproduksi sel adalah
cara pertumbuhan dan perkembangan organisme ini menjadi tambah besar
ukurannya, isinya ssehingga mencapai ukuran dewasa.
Sel Berproduksi Secara.
1) Amitosis.
Pembelahan amitosis adalah pembelahan sel secara langsung.
Pembelahan ini dimualai dengan pembelahan inti sel ( nukleus ) menjadi dua
bagian secara langsung tanpa melalui pembentukan benang spindel, tanpa
adanya pelarutan dinding nukleus serta kromoson tidak tampak. Kromosom
yang terdapat dalam nukleus sel induk di distribusikan kepada kedua anak
nukleus secara acak. Urutan pembelahan juga tidak ada. Contoh, pembelahan
sel endosperma tumbuhan Angiospermae, dan pembelahan makronukleus pada
hewan siliata.
http://khaidirmuhaj.tk
2) Mitosis.
Mitosis adalah proses pembelahan inti sel ( nukleus ) menjadi dua
anakan nukleus yang masing – masing anakan nukleus menerima ( mewarisi )
sel kromoson yang jumlahnya identik ( sama ) dengan jumlah kromosom yang
dimiliki oleh sel induknya. Nukleus sel induk mengandung 2n kromosom dan
nukleus masing – masing anakan sel juga mewarisi 2n kromosom. Pembelahan
mitosis terjadi pada perbanyaka sel tubuh atau sel somatik, misalnya sel
meristem pada tumbuhan, seperti pada ujung batang, ujung akar, dan sel
kambium. Apabila sel ini membelah, jumlah sel menjadi berlipat ganda,
akibatnya tubuh tumbuhan bertambah besar ukurannya. Peristiwa yang terjadi
di dalam nukleus saat berlangsung saat berlangsung pembelahan mitosis
dibagi menjadi beberapa fase atau tahapan pembelahan, yaitu; Profase,
Metafase, Anafase, dan Telefase. Antara mitosis pertama dan mitosis
berikutnya terdapat interfase, yang sebenarnya bukan tahapan mitosis, dan
sering dinamakan fase istirahat.
a) Propase.
Pada awal propase kromosom berbentuk benang kromatin halus
dan panjang. Benang kromatin tersebut berangsur – angsur berubah
menjadi menebal dan memendek dan terdiri dari dua kromatia. Dengan
demikian pada akhir propase kromosom telah mulai tampak.
b) Metafase
Pada metafase, kromosom yang sudah terdiri atas dua karomatid
dan bergandengan pada sentromer menyusun diri pada bidang ekuator
( bidang pembelahan ). Kromosom tersebut terkait pada benang spindel di
bagian sentromer.
c) Anafase
Pada anafase, sentromer membelah menjadi dua, sehingga
karomatid terpisah satu dengan yang lainnya. Benang spindel menarik
kromatid – kromatid tersebut menuju kemasing – masing kutub sel.
Setelah sampai di kutub sel, masing – masing karomatid menjadi
kromosom.
http://khaidirmuhaj.tk
d) Telofase
Pada fase telofase, pada masing – masing kutub sel terjadi
pembentukan membran anakan nukleus yang membungkus ( membatasi )
kromosom yang ada di situ. Kemudian kromosom yang berada di nukleus
akan berangsur – angsur menjadi pipih, dan akhirnya lenyap tidak tampak
lagi. Begitu pula benang spindel juga menghilang,bersamaan dengan
kejadian tersebut terjadi pembelahan ( pembagian ) isi sel menjadi dua
bagian yang sama, perisiwa ini dinamakan Sitokinesis.
Fungsi Mitosis :
a ) Menjaga faktor genetik agar tetap ( sama ).
b ) Pada organisme multisel, mitosis berperan untuk pertumbuhan.
c ) Pada organisme unisel, mitosis berperan sebagai alat reproduksi
3) Miosis
Miosis adalah bentuk pembelahan nukleus yang mengakibatkan
pengurangan jumlah dari jumlah kromosom diploid ( 2n ) menjadi jumlah
kromosom hiploid ( n ). Karena terjadi pengurangan jumlah kromosom, maka
pembelahan miosis disebut pemblahan reduksi ( meio artinya reduksi ).
Pembelahan meiosis terjadi pada gonade atau alat reproduksi pada hewan,
terjadi pada testis ketika membentuk spermatozoa, dan pada ovarium ketika
membentuk ovum. Pada tumbuhan biji terjadi pada putik ketika membentuk
ovom dan benang sari ketika meme bentuk serbuksari.
Pembelahan miosis terjadi dua kali tampa diselingi interfase. Miosis 1 adalah
pembelahan reduksi dan meosis 2 adalah pembelahan mitosis.
Tujuan pembelahan mitosis adalah agar jumlah kromosom dari generasi
kegenerasi tetap yaitu 46 buah dan untuk menghindari jumlah kromosom yang
berlipat ganda pada generasi berikutnya.
Memperbanyak diri dengan berjenis kelamin.
Untuk ini diperlukan dua jenis sel yang berlawanan atau berlainan jenis yang
terdiri dari :
· Sel jantan ( Spermatozoa )
http://khaidirmuhaj.tk
· Sel betina ( Ovum )
Kedua jenis sel ini disebut sel kelamin, jika kedua sel ini sudah cukup
umursatu sama lainnya bertemu, maka mereka akan bersenyawa menjadi
sebuah sel, persenyawaan ini akan segera mengalami mitosisi sehingga dapat
tumbuh menjadi embrio ( janin ). Embrio adalah janin dalam kandungan
sebelum umur 3 bulan kalau umur lebih dari 3 bulan disebut fetus. Bila sel
betina dibuahi maka berbentuk sebuah sel di mana terjadi perubahan –
perubahan dalam sel yang yang seterusnya mengakibatkan diferensiasi pada
sel.
G. Siklus Sel.
Urutan kejadian – kejadian yang berlangsung diantara pembentukan sel
dan pembelahan sel dalam bentuk anakan sel dinamakan siklus sel atau daur sel,
yang terdiri atas tiga tingkatan.
1 ) Interfrase
Fase interfrase merupakan periode sintesis dan pertumbuhan yang intensif.
Sel membentuk banyak materi zat yang diperlukan untuk pertumbuhan dan untuk
menyelenggarakan kegiatan sel,serta replikasi AND.
2 ) Mitosis
Mitosis adalah proses pembelahan nukleusyang melibatkan peisahan
kromatid dan pendistribusiannyasebagai kromosom kepada anakan sel. Mitosis
terdiri atas empat fase, yaitu profase, metafase, anafase, dan telofase.
3) Pembelahan Sel
Pembelahan sel terjadi pembagian sitoplasma dan organel kepada anak sel
dalam jumlah yang sama.
H. Gametogenesis.
Gametogenesis merupakan proses merupakan pembentukan gamet secara
mitosis meiosis yang terjadi dialat reproduksi. Pembentukan gamet terjadi secara
meiosis dan berlangsung dalam alat perkembangbiakan jantan dan betina pada
individu dewasa. Meiosis terjadi pada pembentukan sel – sel kelamin atau
pembentukan sel – sel gamet. Peristiwa ini disebut gametogenesisi, dan bertempat
http://khaidirmuhaj.tk
( berlangsung ) di dalam gonad. Gametogenesis terutama terjadi pada hewan –
hewan tulang belakang, termasuk manusia. Gametogenesis terdiri atas
spermatogenesis, yaitu proses tejadinya pembentukan sperma di dalam testis dan
oogenesis, yaitu pembentukan sel telur ( ovum ) di dalam ovarium.
I. Metabolisme Sel.
Metabolisme adalah proses kimia atau perubahan reaksi kimia yang terjadi
di dalam sel jaringan tubuh organisme. Proses metabolisme di dalm sel melibatkan
enzim yang berperan sebagai biokatalisator pada reaksi – reaksi biokimia yang
terjadi di dalam sel jaringan.
Metabolisme dibagi menjadi dua golongan, yaitu proses kontruksi
( pembentukan ) dan proses destruksi ( pemecahan ). Proses kontruksi disebut
anabolisme, yaitu proses sintesis sebagai senyawa organik dari elemen anorganik,
misalnya sistesis zat gula pada peristiwa fotosintesis, serta sisntesis zat protein dan
zat lemak. Pada anabolisme terjadi penimbunan atau penyimpanan sejumlah
energi potensial pada subtansi yang dibentuk. Proses destruksi disebut
katabolisme yaitu proses pemecahan molekul – molekul zat yang komplek
menjadi molekul zat yang lebih sederhana, misalnya pemecahan molekul
karbohidrat menjadi molekul glukosa, pemecahan molekul protein menjadi asam
amino, serta pemecahan lemak menjadi asam lemak dan gliserol. Proses
katabolisme terjadi pada respirasi sel, fermentasi, dan pencernaan makanan.pada
katabolisme, energi potensial yang semula disimpan di dalam subtansi zat
dibebaskan atau dilepaskan sebagai energi kerja ntuk dipergunakan dalam
berbagai aktivitas protoplasmasel hidup.
http://khaidirmuhaj.tk
KESIMPULAN
1 ) Sel adalah unit terkecil makhluk hidup.
2 ) Bagian – bagian sel terbagi menjadi :
a ) Dinding sel ( selaput sel )
b ) Protoplasma
c ) Inti sel ( nukleus )
3 ) Repruduksi sel terdiri atas :
a ) Amitosis, yaitu pembelahan nukleus secara langsung tanpa melalui
tahapan.
b ) Mitosis, yaitu pembelahan nukleus secara tidak langsung, melalui
tahapan profase, metafase, anafase, dan telofase.
c ) Meosis, yaitu pembelahan reduksi.
4 ) a ) Mitosis terjadi pada pembentukan sel tubuh ( somatik ) dan
menghasilkan sel anak dengan jumlah kromosom sama dengan sel induk (
2n ).
b ) meosis terjadi pada perbanyakan sel gonade pada saat membentuk
gamet. Sel anak memiliki kromosom separo jumlah sel induk.
5 ) Siklus Sel, terdiri atas :
a ) Interfase.
b ) Mitosis ,dan
c ) Pembelahan Sel.
6 ) Metabolisme adalah proses kimia ( reaksi kimia ) yang terjadi di dalam sel
organisme.
7 ) Proses metabolisme didalam sel melibatkan enzim dan berlangsung elalui
katabolisme.
8 ) Enzim adalah biokatalisator, yaitu zat yang mempercepat atau
memperlambat suatu reaksi dalam sel,dan dia sendiri tidak ikut bereaksi
sehingga sebelum dan sesudah reaksi zat tadi keadaanya tidak berubah (
tetap ).
http://khaidirmuhaj.tk
DAFTAR PUSTAKA
Syaifuddin. 1992 . ANATOMI FISIOLOGI untuk siswa perawat. Jakarta :
Penerbit Buku Kedokteran EGC.
Soedarjatmo, dkk. 1996 . BIOLOGI KELAS 3 . Kelaten : Intan Pariwara.
Solikhin . 2001 . KONSEP LKS SOAL BIOLOGI. Banjarmasin.

Jumat, 03 Desember 2010

penyakit hati akut


Background
Acute liver failure (ALF) is an uncommon condition in which the rapid deterioration of liver function results in coagulopathy and alteration in the mental status of a previously healthy individual. Acute liver failure often affects young people and carries a very high mortality. The term acute liver failure is used to describe the development of coagulopathy, usually an international normalized ratio (INR) of greater than 1.5, and any degree of mental alteration (encephalopathy) in a patient without preexisting cirrhosis and with an illness of less than 26 weeks' duration.
Acute liver failure is a broad term and encompasses both fulminant hepatic failure (FHF) and subfulminant hepatic failure (or late-onset hepatic failure). Fulminant hepatic failure is generally used to describe the development of encephalopathy within 8 weeks of the onset of symptoms in a patient with a previously healthy liver. Subfulminant hepatic failure is reserved for patients with liver disease for up to 26 weeks before the development of hepatic encephalopathy.

Some patients with previously unrecognized chronic liver disease decompensate and present with liver failure; although this is not technically FHF, discriminating such at the time of presentation may not be possible. Patients with
Wilson disease, vertically acquired hepatitis B virus (HBV), or autoimmune hepatitis may be included in spite of the possibility of cirrhosis if their disease has been less than 26 weeks.
Drug-related hepatotoxicity is the leading cause of acute liver failure in the United States. The outcome of acute liver failure is related to the etiology, the degree of encephalopathy, and related complications. Unfortunately, despite aggressive treatment, many patients die from fulminant hepatic failure.1,2  Before orthotopic liver transplantation (OLT) for fulminant hepatic failure, the mortality rate was generally greater than 80%. Approximately 6% of OLTs performed in the United States are for fulminant hepatic failure. However, with improved intensive care, the prognosis is much better now than in the past, with some series reporting approximately a survival rate of 60%.
The development of liver support systems provides some promise for this particular circumstance, although it remains a temporary measure and, to date, has no impact on survival. Other investigational therapeutic modalities, including hypothermia, have been proposed but remain unproven.3,4

For excellent patient education resources, visit eMedicine's
Hepatitis Center and Liver, Gallbladder, and Pancreas Center. Also, see eMedicine's patient education articles Hepatitis A, Hepatitis B, Hepatitis C, and Cirrhosis.
Pathophysiology
The development of cerebral edema is the major cause of morbidity and mortality of patients suffering from acute liver failure.3,5,6 The etiology of this intracranial hypertension (ICH) is not fully understood, but it is considered to be multifactorial.
Briefly, hyperammonemia may be involved in the development of cerebral edema. Brain edema is thought to be both cytotoxic and vasogenic in origin. Cytotoxic edema is the consequence of impaired cellular osmoregulation in the brain, resulting in astrocyte edema. Cortical astrocyte swelling is the most common observation in neuropathologic studies of brain edema in acute liver failure. In the brain, ammonia is detoxified to glutamine via amidation of glutamate by glutamine synthetase. The accumulation of glutamine in astrocytes results in astrocyte swelling and brain edema. There is clear evidence of increased brain concentration of glutamine in animal models of acute liver failure. The relationship among high ammonia, glutamine, and raised ICH has been reported in humans.
Another phenomenon that has been involved in acute liver failure is the increase of intracranial blood volume and cerebral blood flow. The increased cerebral blood flow results because of disruption of cerebral autoregulation. The disruption of cerebral autoregulation is thought to be mediated by elevated systemic concentrations of nitric oxide, which acts as a potent vasodilator. However, in this setting, cytokine profiles are also deranged. Elevated serum concentrations of bacterial endotoxin, tumor necrosis factor-alpha (TNF-a), and interleukin-1 (IL-1) and -6 (IL-6) have been found in fulminant hepatic failure.

Another consequence of fulminant hepatic failure is multisystem organ failure, which is often observed in the context of a hyperdynamic circulatory state that mimics sepsis (low systemic vascular resistance); therefore, circulatory insufficiency and poor organ perfusion possibly either initiate or promote complications of fulminant hepatic failure.
The development of liver failure represents the final common outcome of a wide variety of potential causes, as the broad differential diagnosis suggests (see Other Problems to Be Considered). A complete discussion is beyond the scope of this article, and the reader is directed to consult the literature dealing specifically with these underlying etiologic factors. However, mechanisms of acetaminophen hepatotoxicity are worth discussing briefly.
As with many drugs that undergo hepatic metabolism (in this case, by cytochrome P-450), the oxidative metabolite of acetaminophen is more toxic than the drug.2,7,8,9 An active metabolite, N -acetyl-p-benzoquinone-imine (NAPQI), appears to mediate much of the damage to liver tissue by forming covalent bonds with cellular proteins. Therefore, the presence of highly reactive free radicals following acetaminophen ingestion poses a threat to the liver parenchyma, but it is usually addressed adequately by intrahepatic glutathione reserves. The reduced glutathione quenches the reactive metabolites and acts to prevent nonspecific oxidation of cellular structures that may result in severe hepatocellular dysfunction.
This mechanism fails in 2 different yet equally important settings. The first is an overdose (accidental or intentional) of acetaminophen. This simply overwhelms the hepatic stores of glutathione, allowing reactive metabolites to escape. The second and less obvious scenario occurs with a patient who consumes alcohol regularly. This does not necessarily require a history of alcohol abuse or alcoholism. Even a moderate or social drinker who consistently consumes 1-2 drinks daily may sufficiently deplete intrahepatic glutathione reserves. This results in potentially lethal hepatotoxicity from what is otherwise a safe dose of acetaminophen (below the maximum total dose of 4 g/d) in an unsuspecting individual.
Frequency
United States
The incidence of fulminant hepatic failure appears to be low, with approximately 2000 cases annually occurring in the United States. Drug-related hepatotoxicity comprises more than 50% of acute liver failure cases, including acetaminophen toxicity (42%) and idiosyncratic drug reactions (12%). Nearly 15% of cases remain of indeterminate etiology. Other causes seen in the United States are hepatitis B disease, autoimmune hepatitis, Wilson disease, fatty liver of pregnancy, and HELLP (hemolysis, elevated liver enzymes, low platelets) syndrome.
International
Acetaminophen or paracetamol overdoses are prominent causes of FHF in Europe and, in particular, Great Britain. In the developing world, acute HBV infection dominates as a cause of fulminant hepatic failure because of the high prevalence of HBV. Hepatitis delta virus (HDV) superinfection is much more common in developing countries than in the United States because of the high rate of chronic HBV infection. Hepatitis E virus (HEV) is associated with a high incidence of fulminant hepatic failure in women who are pregnant and is of concern in pregnant patients living in or traveling through endemic areas. These regions include, but are not limited to, Mexico and Central America, India and the subcontinent, and the Middle East.
Mortality/Morbidity
Several factors contribute to morbidity and mortality in cases of liver failure.
The etiologic factor leading to liver failure and the development of complications are the main determinants of liver failure. Patients with acute liver failure caused by acetaminophen have a better prognosis than those with an indeterminate form of the disorder. Patients with stage 3 or 4 encephalopathy have a poor prognosis. The risk of mortality increases with the development of any of the complications, which include cerebral edema, renal failure, adult respiratory distress syndrome (ARDS), coagulopathy, and infection.
  • Viral hepatitis: In patients with fulminant hepatic failure due to hepatitis A virus (HAV), survival rates are greater than 50-60%. These patients account for a substantial proportion (10-20%) of the pediatric liver transplants in some countries despite the relatively mild infection that is observed in many children infected with HAV. The outcome for patients with fulminant hepatic failure as the result of other causes of viral hepatitis is much less favorable.
  • Acetaminophen toxicity: Fulminant hepatic failure due to acetaminophen toxicity generally has a relatively favorable outcome, and prognostic variables permit reasonable accuracy in determining the need for OLT. Patients presenting with deep coma (hepatic encephalopathy grades 3-4) on admission have increased mortality compared with patients with milder encephalopathy. An arterial pH of lower than 7.3 and either a prothrombin time (PT) greater than 100 seconds or serum creatinine greater than 300 mcg/mL (3.4 mg/dL) are independent predictors of poor prognosis.
  • Non-acetaminophen-induced fulminant hepatic failure: In non-acetaminophen-induced fulminant hepatic failure, a PT of greater than 100 seconds and any 3 of the following 5 criteria are independent predictors10 : (1) age younger than 10 years or older than 40 years; (2) fulminant hepatic failure due to non-A, non-B, non-C hepatitis; halothane hepatitis; or idiosyncratic drug reactions;, (3) jaundice present longer than 1 week before onset of encephalopathy; (4) PT greater than 50 seconds; and (5) serum bilirubin greater than 300 mmol/L (17.5 mg/dL). Once these patients are identified, arrange appropriate preparations for OLT.
    • The above criteria were developed at King's College Hospital in London10 and have been validated in other centers; however, significant variability occurs in terms of the patient populations encountered at any center, and this heterogeneity may preclude widespread applicability.
    • Many other prognosticating tests have been proposed. Reduced levels of group-specific component (Gc)-globulin (a molecule that binds actin) are reported in fulminant hepatic failure,11,12 and a persistently increasing PT portends death. These and other parameters are not validated widely yet.
  • Wilson disease: When this condition presents as fulminant hepatic failure without OLT, it is almost uniformly fatal.
  • Age: Patients younger than 10 years and older than 40 years tend to fare relatively poorly.
  • Rate of development and degree of encephalopathy: A short time from jaundice (usually the first unequivocal sign of liver disease recognized by the patient or family) to encephalopathy is associated paradoxically with improved survival. When this interval is less than 2 weeks, patients have hyperacute liver failure. Although the grade of encephalopathy is a prognostic factor in cases of acetaminophen overdose, it does not correlate with outcome in other settings.
Race
Acute liver failure is seen among all races. In a US multicenter study of acute liver failure, the ethnic distribution included whites (74%), Hispanics (10%), blacks (3%), Asians (5%), and Latin Americans (2%).8,9,13
Sex
Viral hepatitis E and autoimmune liver disease are more common in women than in men. In a US multicenter study group, acute liver failure was seen more often in women (73%) than in men.
Age
Age may be pertinent to morbidity and mortality in those with acute liver failure. Patients younger than 10 years and older than 40 years tend to fare relatively poorly. According to a US multicenter study group, women with acute liver failure were older (39 y) than men (32.5 y).
Clinical
History
All patients with clinical or laboratory evidence of moderate or severe acute hepatitis should have immediate measurement of prothrombin time (PT) and careful evaluation of mental status. The patients should be admitted to the hospital if there is alteration in mental sensorium or prothrombin time is prolonged.
  • Clinical features may be self-evident and lead to a rapid diagnosis of acute liver failure.
  • The patient history is valuable for guiding appropriate interventions.
    • If the patient is incapacitated, closely question family members and friends.
    • Detail the date of onset of jaundice and encephalopathy, alcohol use, medication use (prescription and illicit or recreational), herbal or traditional medicine use, family history of liver disease (Wilson disease), exposure risk factors for viral hepatitis (travel, transfusions, sexual contacts, occupation, body piercing), and toxin ingestion (mushrooms, organic solvents, phosphorus contained in fireworks).
    • Determine if any complications have developed.
Physical
  • Physical examination includes careful assessment and documentation of mental status and search for stigmata of chronic liver disease. Jaundice is often but not always present. Right upper quadrant tenderness is variably present. The liver span may be small, indicative of significant loss of volume due to hepatic necrosis. An enlarged liver may be seen with congestive heart failure, viral hepatitis, or Budd-Chiari syndrome.
  • Development of cerebral edema ultimately may give rise to manifestations of increased intracranial pressure (ICP), including papilledema, hypertension, and bradycardia.
  • The rapid development of ascites, especially if observed in a patient with fulminant hepatic failure accompanied by abdominal pain, suggests the possibility of hepatic vein thrombosis (Budd-Chiari syndrome).
  • Hematemesis or melena may complicate the presentation of fulminant hepatic failure as a result of upper gastrointestinal (GI) bleeding.
  • Typically, patients are hypotensive and tachycardic as a result of the reduced systemic vascular resistance that accompanies fulminant hepatic failure, a pattern that is indistinguishable from septic shock. Although this may be intrinsic to hepatic failure, considering the possibility of a superimposed infection (especially spontaneous bacterial peritonitis) is important.
Table. Grading of Hepatic Encephalopathy

Table
Grade
Level of Consciousness
Personality and Intellect
Neurologic Signs
Electroencephalogram (EEG) Abnormalities
0
Normal
Normal
None
None
Subclinical
Normal
Normal
Abnormalities only on psychometric testing
None
1
Day/night sleep reversal, restlessness
Forgetfulness, mild confusion, agitation, irritability
Tremor, apraxia, incoordination, impaired handwriting
Triphasic waves (5 Hz)
2
Lethargy, slowed responses
Disorientation to time, loss of inhibition, inappropriate behavior
Asterixis, dysarthria, ataxia, hypoactive reflexes
Triphasic waves (5 Hz)
3
Somnolence, confusion
Disorientation to place, aggressive behavior
Asterixis, muscular rigidity, Babinski signs, hyperactive reflexes
Triphasic waves (5 Hz)
4
Coma
None
Decerebration
Delta/slow wave activity
Grade
Level of Consciousness
Personality and Intellect
Neurologic Signs
Electroencephalogram (EEG) Abnormalities
0
Normal
Normal
None
None
Subclinical
Normal
Normal
Abnormalities only on psychometric testing
None
1
Day/night sleep reversal, restlessness
Forgetfulness, mild confusion, agitation, irritability
Tremor, apraxia, incoordination, impaired handwriting
Triphasic waves (5 Hz)
2
Lethargy, slowed responses
Disorientation to time, loss of inhibition, inappropriate behavior
Asterixis, dysarthria, ataxia, hypoactive reflexes
Triphasic waves (5 Hz)
3
Somnolence, confusion
Disorientation to place, aggressive behavior
Asterixis, muscular rigidity, Babinski signs, hyperactive reflexes
Triphasic waves (5 Hz)
4
Coma
None
Decerebration
Delta/slow wave activity
Causes
Numerous causes of fulminant hepatic failure exist, but drug-related hepatotoxicity due to acetaminophen and idiosyncratic drug reactions is the most common cause of acute liver failure in the United States. For nearly 15% of patients, the cause remains indeterminate.
  • Hepatitis A and B are the typical viruses that cause viral hepatitis and may lead to hepatic failure. Hepatitis C rarely causes acute liver failure. HDV (co-infection or superinfection with HBV) can lead to fulminant hepatic failure. HEV (often observed in pregnant women) in endemic areas is an important cause of fulminant hepatic failure.
  • Other atypical viruses can cause viral hepatitis and fulminant hepatic failure.
  • The incidence of acute fatty liver of pregnancy, frequently culminating in fulminant hepatic failure, has been estimated to be 0.008% (typically in the third trimester; preeclampsia develops in approximately 50% of these patients). However, the most common cause of acute jaundice in pregnancy is acute viral hepatitis, and most of these patients do not develop fulminant hepatic failure. The one major exception to this is the pregnant patient who develops HEV infection and in whom an exposure history is usually remarkable for travel and/or residence in the Middle East, India and the subcontinent, Mexico, or other endemic areas. In these patients, progression to fulminant hepatic failure is unfortunately common and often fatal. In the United States, it is relatively uncommon but must be considered in the appropriate setting.
  • The HELLP syndrome occurs in 0.1-0.6% of pregnancies and is usually associated with preeclampsia.
  • Incidence of fulminant hepatic failure following other liver diseases is less well established.
  • Many drugs (both prescription and illicit) are implicated in the development of FHF. The list provided is incomplete, and only the more common agents are identified. Consult an appropriate pharmacy reference text if concerns exist regarding a specific medication. Idiosyncratic drug reactions may occur with virtually any medication. Fortunately, these appear to lead to fulminant hepatic failure only rarely, although they are the most common form of drug reaction to lead to fulminant hepatic failure (with the exception of acetaminophen poisoning).
    • Drug toxicity – Acetaminophen (also known as paracetamol and APAP)
      • Intentional or accidental overdose. In the US Acute Liver Failure (ALF) study, unintentional acetaminophen use accounted for 48% of cases, whereas 44% of cases were due to intentional use; in 8% of cases, the intention was unknown.
      • Dose-related toxicity
      • May have greatly increased susceptibility to hepatotoxicity with depleted glutathione stores in the setting of chronic alcohol use (consider increased susceptibility due to chronic alcohol use)
    • Prescription medications (idiosyncratic hypersensitivity reactions)
      • Antibiotics (ampicillin-clavulanate, ciprofloxacin, doxycycline, erythromycin, isoniazid, nitrofurantoin, tetracycline)
      • Antivirals (fialuridine)
      • Antidepressants (amitriptyline, nortriptyline)
      • Antidiabetics (troglitazone)
      • Antiepileptics (phenytoin, valproate)
      • Anesthetic agents (halothane)
      • Lipid-lowering medications (atorvastatin, lovastatin, simvastatin)
      • Immunosuppressive agents (cyclophosphamide, methotrexate)
      • Nonsteroidal anti-inflammatory agents (NSAIDs)
      • Salicylates (Reye syndrome)
      • Oral hypoglycemic agents (troglitazone)
      • Others (disulfiram, flutamide, gold, propylthiouracil)
    • Illicit drugs
      • Ecstasy (3,4-methylenedioxymethamphetamine [MDMA])
      • Cocaine (may be the result of hepatic ischemia)
    • Herbal or alternative medicines
      • Ginseng
      • Pennyroyal oil
      • Teucrium polium
      • Chaparral or germander tea
      • Kawakawa
  • The following toxins are associated with dose-related toxicity:
    • Amanita phalloides mushroom toxin14
    • Bacillus cereus toxin
    • Cyanobacteria toxin
    • Organic solvents (eg, carbon tetrachloride)
    • Yellow phosphorus
  • The following are vascular causes of hepatic failure:
    • Ischemic hepatitis (consider especially if in the setting of severe hypotension or recent hepatic tumor chemoembolization)
    • Hepatic vein thrombosis (Budd-Chiari syndrome)
    • Hepatic veno-occlusive disease
    • Portal vein thrombosis
    • Hepatic arterial thrombosis (consider posttransplant)
  • The following metabolic diseases can cause hepatic failure:
  • Autoimmune disease (autoimmune hepatitis) can cause hepatic failure.
  • Malignancy can cause of hepatic failure.
    • Primary liver tumor (usually hepatocellular carcinoma, rarely cholangiocarcinoma)
    • Secondary tumor (extensive hepatic metastases or infiltration from adenocarcinoma, such as breast, lung, melanoma primaries [common]; lymphoma; leukemia)
  • The following are miscellaneous causes of hepatic failure:
    • Adult-onset Still disease
    • Heat stroke
    • Primary graft nonfunction (in liver transplant recipients)